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EXECUTIVE SUMMARY

The goal of the Spring 1990 EGM 4001 Design class was to design, fabricate, and

test sensors and control systems for a closed-loop life support system (CLLSS). The

designs investigated were to contribute to the development of NASA's Controlled

Ecological Life Support System (CELSS) at Kennedy Space Center (KSC). Designs

included a seed moisture content sensor, a porous medium wetness sensor, a plant

health sensor, and a neural network control system.

The seed group focused on the design and implementation of a sensor that could

detect the moisture content of a seed batch.

The porous medium wetness group concentrated on the development of a sensor

to monitor the amount of nutrient solution within a porous plate incorporating either

infrared reflectance or thermal conductance properties.

The plant health group examined the possibility of remotely monitoring the

health of the plants within the Biomass Production Chamber (BPC) using infrared

reflectance properties.

Finally, the neural network group concentrated on the ability to use parallel

processing in order to control a robot arm and analyze the data from the health sensor

to detect unhealthy regions of a plant.

The EGM 4001 class feels NASA will benefit from this cooperative venture.

NASA received the interest and enthusiasm of engineering students. Recommendations

provided will benefit future study in these areas.

ii



ACKNOWLEDGEMENTS

The members of the EGM 4001 Design class appreciate the cooperation of the

National Aeronautic and Space Administration and the Bionetics Corporation,

particularly the following persons:

Dr. William Knott

Dr. John Sager

Mr. Ralph Prince

Dr. Ray Wheeler

Dr. Richard Strayer

Mr. Thomas Dreschel

In addition, the supporting grant from the Universities Space Research

Association is appreciated.

The contributions of the following faculty of the Department of Aerospace

Engineering, Mechanics, and Engineering Science at the University of Florida was very

beneficial in research performed by the Spring Design class:

Dr. Harold Doddington

Dr. Robert Hirko

Dr. David Jenkins _'

Dr. C.E. Taylor

The following faculty at the University of Florida were also of great assistance:

Dr. Roy Harrell, Department of Agricultural Engineering

Dr. Jose Principe, Department of Electrical Engineering

°°°

111 '



Dr. Tom Shih, Department of Mechanical Engineering

Mr. Art Taylor, Department of Agricultural Engineering

Dr. Fedro Zazueta, Department of Agricultural Engineering

The assistance of the following graduate students associated with the University

of Florida is also greatly appreciated:

Larry Carr, Physics Department

Wilhelm Schwab, Department of Aerospace Engineering, Mechanics,

and Engineering Science

The guidance of the following assistants and consultants at the University of

Florida is also appreciated:

Ken Anderson

Ara Manukian

Kent Tambling

We also like to extend a special thanks to the following individuals:

Mr. Don Vinton, Department of Aerospace Engineering, Mechanics, and

Engineering Science

Dell Optics, Fairview, N.J.

Microcoatings, Wes_ford, Mass.

Omega Company, Stamford, CT

Finally, special thanks to Dr. Gale E. Nevill, Jr., for his support and guidance

throughout the semester.

iv



1990EGM 4001DESIGN CLASS

Leslie Alnwick
Lisa Bean

Judd Bishop
Amy Clark
Gavin Clark
Alan Clayton
Patricia Debs
Barry Finger
Tom Good

Richard Kern
Don Koedam
SteveKropf

Mark Marchan
Walt Marchand
Michael Medley
Pedro Rodriguez
Robert Schneider
Parker Severson
Andrew Speicher

V



INTRODUCTION

The EGM 4001 Design class has been working in conjunction with the National

Aeronautics and Space Administration (NASA) and the Controlled Ecological Life

Support System (CELSS) project, supported by a grant from the Universities Space

Research Association (USRA). The research being done at the CELSS facility has

focused on the development of a closed-loop environment capable of sustaining plants

and humans for a long-term space mission. The Spring 1990 Design class has

concentrated on constructing and testing sensors and controllers.

Goals

After conducting studies in sensor systems in the Fall 1989 semester, the class

determined which areas of the life support system have a strong need for control and

sensing. The areas of interest included - moisture sensing, porous medium wetness

sensing, plant health sensing, and controlling with a neural network. The overall goal

was to develop a working prototype of the CELLS environment.

Class Organization

The students of the class *eere divided into the four sensing and control areas.

Each group then pursued their respective topics in order to accomplish the class goal.

Report Structure

The remainder of this report is divided into four sections comprised of the four

final group reports.

research.

Within each report are conclusions and recommendations for future
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SUMMARY

Last semester, the Plant Propagation group identified several sensing needs for

soybean crops in a closed-loop life support system (CLLSS). Seed processing after

harvest is an important step in ensuring the growth and high yield of future crops. As a

result of their investigations, the Seed Group was formed to focus on the design and

implementation of a sensor that could detect the moisture content of a seed batch. The

technique employed is based on the property of water to absorb certain wavelengths in

the infrared spectrum; however, the measured quantity of the system is infrared

reflectance. The system is constructed to be versatile, allowing the moisture content of

several mediums to be determined.

The initial testing of the moisture content sensor involved the optimization of

parameters such as light intensity, bias voltage, and power transmission. The next phase

of testing focused on detecting the infrared reflectance of seed batches of known

moisture contents, and analyzing the mathematical data. As a final test, seeds of

unknown moisture content were evaluated using the sensor, and validation of its

performance was made using a calibrated digital moisture meter. Although the original

goal of determining seed viability has not yet been proven, the members of the Seed

Group feel that measuring the moisture content of freshly harvested seeds for extremes

in percent moisture can indicate the germination potential of a seed batch when used in

conjunction with another method (seed density, GADA, TZ test). Nevertheless, the

present moisture content design successfully differentiates seed samples according to

percent moisture.



INTRODUCTION

In any long term spacemission incorporating a plant growth unit asa source of

food, the importance of seedprocessingcannot be overlooked. It is unlikely that the

total mission requirements for seedscanbe satisfiedwith a stored supply; therefore,

seedharvesting,selection,drying, and storagemethods must be adequatelydeveloped

and controlled.

The primary objective of the SeedGroup was to develop a remote sensing

technique that, when fully automated, could provide a meansto determine the moisture

content of a representativesample of seeds. Measuring the moisture content in seeds

maybe usedto determine harvest time of seeds,duration of seed drying, or perhaps

even seedselection. The SeedGroup designeda moisture content sensorthat employed

infrared reflectanceof a seed samplebasedon the ability of water to absorbcertain

wavelengthsof the infrared spectrum.

This report gives a brief background on infrared reflectance, followed by a

physical description of the SeedGroup's moisture content sensor. Further detail is

included on the filters, detector, and lensesused in the configuration. Spedfics of the

procedures used to optimize the system and test seed samples are outlined. Also

included are recommendations for future developments.
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BACKGROUND

Sensing Moisture Content

Moisture content of soybean seeds was chosen as the property that could best be

sensed for three reasons: 1) the test is non-destructive to the seeds, 2) the process of

varying moisture content in the seeds for testing purposes is a simple procedure, and 3)

the method is easily automated. A moisture content sensor is important in a closed-

loop life support system for several applications. If the device could be constructed to

sense the moisture of seeds or seed pod while still attached to the plant, the optimum

harvest time may be determined. If not used to determine harvest time, a moisture

content sensor could be used to determine whether a seed batch is retained for storage

and replanting, or sent to food processing, based on extremes in moisture content.

Seeds too high in moisture may cause problems in storage as they are conducive to

growth of mold and fungi and are more susceptible to mechanical damage during

harvesting and handling. Seed batches of low percent moisture may have dried on the

plant too long, reducing their vigor and storage life. The measurement of seed moisture

content may also be instrumental in controlling the drying times of seed batches before

storage (Figure I-1).

ISeed M°isture _ "t_Viability?'Sensor

Conditions _ Dryer

Replant _ [ Storage 1[

Figure 1-1. Moisture content sensor integration.
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Infrared Reflectance

The concept of using infrared reflectance as a means to determine the moisture

content of a seed batch is a technique based on the property of water to absorb certain

wavelengths in the infrared spectrum. The band most widely used in on-line moisture

determination is the 1.94 micron band within the infrared spectrum (Carr-Brion, 1986).

Because light rays that interact with a rough surface are scattered, the best method of

sensing absorption properties is by diffuse reflectance.

In the design of this sensor system, two filters must be used--one that passes a

water absorption band, and another that passes a reference wavelength. The passed

wavelengths interact with the surface of the seed sample producing a reflectance

inversely proportional to the amount of infrared energy absorbed. A solid with a high

moisture content will absorb more infrared energy in the water absorbing band,

consequently reflecting less. ColIecting the reflected energy and focusing it on a

detector produces a corresponding voltage output. The signal produced by the detector

for each filter is recorded, and the ratio of the two reflectances is calculated. Because a

reference filter was used for each measurement, the results are relatively independent of

sample positioning, temperature, and other external effects.

The infrared moisture content sensor's design was based on specifications in

Moisture Sensors in Process Control. The two filters chosen were a 1.8 micron

reference filter and a 1.94 micron bandpass filter. The detector type is lead sulfide,

which is capable of detecting both wavelengths of interest for the system. Using infrared

reflectance techniques to measure moisture content in solids is a feasible method for

implementation in a closed-loop automated system (Carr-Brion, 1986).



Seed Conditioning

Seed batches of 250 grams were prepared for testing by two methods. Oven

drying, microwaving, and sun baking created seed samples of relatively low moisture

content (approximately 6%). To obtain high moisture contents, seed batches were

soaked in liquid water for different time intervals to achieve samples ranging from 20-

35% moisture. The seeds were placed in sealed plastic bags and refrigerated to allow

time for the moisture contents to reach equilibrium. The moisture content of each 250

gram batch was then measured by a Burrows Model 700 digital moisture meter and the

values were used as the basis for test validation.

PHYSICAL COMPONENTS

The moisture content sensor (MCS) uses infrared diffuse reflectance to non-

destructively measure the percent moisture in a seed sample. The measurement of the

amount of light (a specific wavelength) reflected from the seed sample relates directly to

the water concentration in the sample. The ratio of the reference filter voltage to the

selective filter voltage provides a correlation to the percent moisture.

The moisture content sensor designed to accomplish this task is comprised of four

main components (Figure I-2):

1. Infrared source

2. Optical configuration
3. Detector and circuit

4. Computer interface
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Figure I-2. MCS system block diagram.

Infrared Source

The infrared light source used in this design is a small quartz-halogen projector bulb

(500 Watts). The bulb intensity is controlled by a dimmer switch and a parabolic

reflector directs the light rays toward the sample. The intended design approximates a

point source by allowing light to exit the housing through a small hole, producing a

concentrated light beam. A cooling fan was added to dissipate excess heat, which may

damage the filters in the optical system.

Optical Configuration

The optical configuration of the MCS consists of four basic units (Figure I-3)

1. Piano-convex collimating lens

2. High pass filter

3. Narrow ban@ass filters with cartridge

4. Piano-convex focusing lens
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Figure I-3. MCS system configuration.



The light beam from the source diffuses as it passes through the pinhole. A

piano-convex collimating lens, placed at a distance equal to its focal length from the

point source, gathers the diffuse light beam. The controlled column of light is then

directed through a high-pass filter passing wavelengths greater than 1.1 microns, in effect

blocking out unwanted energy from ultraviolet and visible light.

The wavelengths that are able to pass through the high-pass filter encounter the

filter cartridge holding the narrow bandpass filters. After passing through each filter,

the infrared wavelengths are intercepted by the seed sample.

The reflected infrared energy from the sample is collected by a plano-convex

focusing lens which focuses the energy on to the detector. The detector is placed at the

focal length of the focusing lens and integrated into a circuit to provide an analog

readout.

Detector and Circuit

The detector and associated circuitry perform the task of producing a voltage

proportional to the intensity of light reflected. The detector behaves like a variable

resistor when used as a circuit component connected to a bias voltage supply (Infrared

Industries, 1990). Changes in circuit voltage relate to the intensity of the light reflected

from the seed sample. A simple series circuit using a low impedance voltage supply,

and a resistor with a value corresponding to the average value of the detector yielded

acceptable results (Figure I-4).

10



• e

Figure 1-4. Circuit diagram for detector. (Source: Infrared Industries, 1990)

Computer Interface

In a completely automated system, a computer would be interfaced with the

detector circuitry, converting the analog voltage signal from the detector to a digital

signal. A computer program would calculate the ratio of voltages from the reference

and water band filters and determine which values corresponded to specific seed

moisture contents, concluding whether the seed batch would be stored for replanting or

processed as food.

MCS Configuration

The optical components of the MCS were mounted on adjustable arms so that

many different configurations could be tested. Parameters that were optimized include

intensity, power transmission, and bias voltage (refer to Testing Procedures).

Preliminary tests were performed and data was taken in the laboratory to evaluate the

success of various configurations of the MCS. Once testing was concluded, the

components were mounted on a portable platform to immobilize the components,

minimizing the need for reconfiguration after each test. Appendix A gives a detailed list

of the specific components of the MCS.
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FILTERS

Narrow Bandpass Infrared Interference Filters

Two filters are employed in the infrared reflectance technique. One filter of

wavelength 1.94 microns specifically passes a water absorption band, while the other is a

reference filter of 1.80 microns. These wavelengths were selected because they fall

within the sensing range of the infrared detector and ordinary glass can be used for

lenses. The transmission curves of the two filters are presented graphically in Figures

I-5 and I-6. Because of the filters' sensitivity, special precautions were taken to ensure

that they were not damaged or handled unnecessarily.

: :L_ ,--- _=--a-=: t := ................ -_ ............... =_____
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Figure I-5. Transmission curve for reference filter. (Source: Microcoatings, 1990)
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Figure I-6. Transmission curve of bandpass filter. (Source: Dell Optics, 1990)

ORIGINAL PP,GE IS

Peak Wavelength Shift OF POOR QUALITY

If conditions other than 25°C and a 0° incident angle are intended for use,

changes in the filter's spectral characteristics must be taken into account, especially for

the narrow bandpass filters. As the angle of incidence is increased, optical system

performance will be affected by a shift toward shorter wavelengths. An increase in

temperature will shift the filter's peak wavelength toward longer wavelengths. The exact

amount of shift depends on many factors, including the filter's design and its refractive

index. The peak wavelength increases 0.005 microns per degree Celsius above room

13



temperature (Microcoatings, 1990). Typical wavelength shifts approach 1% for a 25 °

angle of incidence and an operating temperature of 150°C. Although not measured

directly, the group feels that these shifts do not significantly effect the accuracy of the

results.

LEAD SULFIDE DETECTOR

The lead sulfide (PbS) detector is a thin film photoconductor which has been

chemically deposited on a quartz substrate. The basic detecting element is the

sensitized film on a substrate with two electrical leads attached to the circuit. Photons

induce changes in conductivity which modulate the current flowing through the detector.

The detector is passive until energized. Biasing with a matched series load resistor to a

constant voltage source was used to activate the detector (Infrared Industries, 1990).

The lead sulfide detector chosen has a spectral response curve which shows good

detectivity from 1.4 - 3.0 microns at room temperature. This range includes the two

wavelengths of 1.80 and 1.94 microns used in the design apparatus. The detector has an

active area of 1 mmx 1 ram. Lead sulfide detectors exhibit excellent stability and

therefore are suitable for use o1_ extended space missions.
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OPTICAL PROPERTIES

In designingan infrared reflectanceprototype, basic optical properties and

formulas were used to determine the final placement of all componentsof the system.

A basic understanding of optical terminology and properties wasneeded in order to

design an optical systemthat would maximize the light energy transmitted and keep

measurementsaccurate. Areas of concern in designingan optical systeminclude specific

lens characteristicssuch asfocal length, convergencyor divergency,and collimation of

light.

General Concepts and Theory.

The focal length of a lens is the measured distance from the object to the point

where the image is precisely focused. There are several ways to determine the focal

length of a lens, one of which is Bessel's method. Bessel's method makes use of the

distance between the object and the image, L, and the distance d between the two

positions of focus (Figure I-7). The formula for Bessel's method is:

U - d 2
+_

4L

The advantage of using this method is that only L and d, rather than the object distance

and image distance, need to be measured (Meyer-Arendt, 1989).

15
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Figure I-7. Bessel's Method. (Source: Meyer-Arendt, 1989)

There are two general classes of lenses, those that cause light to diverge or those

that cause light to converge. A converging (positive) lens is thicker in the center than at

the periphery, while a diverging (negative) lens is thinner in the center. A converging

lens can be used to collimate light. Collimation of light involves taking light from a

point source and producing parallel light beams. This is accomplished by placing the

light source at the focal length of the lens. Another property of converging lenses is the

ability to focus parallel rays of light to a point. By placing the object (source) at infinity,

the light rays are focused at the second focal point (Figure I-8).

Figure I-8. Focal points of a converging lens. (Source: Meyer-Arendt, 1989)
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Optical Design

In an infrared reflectance system, the radiation from a light source is directed by

a collimating lens to the surface of a sample. With the use of a second lens, the diffuse

reflected light is collected and focused on the detector.

Plane-convex lenses are convergent. These lenses collimate light according to the

placement of the object (light source). The asymmetry of a plane-convex lens minimizes

spherical aberrations in situations where the object and image are at unequal distances

from the lens (Figure I-9). To obtain the sharpest focus, the curved surface of the lens

should be oriented toward the distant object. To obtain parallel beams, the opposite

configuration would be used (Newport Catalog, 1990).

Converging or

positive lenses

Positive meniscus

Figure I-9. Types of converging lenses. (Source: Meyer-Arendt, 1989).

Knowing these specific properties, two piano-convex lenses were incorporated into

the design of the sensor prototype. The first lens, L1, is termed the collimating lens

and has a focal length of 70 mm. The lens is placed 70 mm from the light source (the

flat side placed toward the light source), passing a collimated beam of light through the

infrared filters and onto the sample.

17



The second lens, L2, is also a piano-convex lens and is termed the focusing lens.

The focusing lens has a focal length of 46.6 ram. This lens is used to collect the diffuse

reflected radiation and focus the energy on the lead sulphide detector. This lens is

mounted such that the spherical side of the lens is facing the sample and is outside of

the focal length. The detector is placed 46.6 mm from the flat side of the lens (Figure

I-3).

Infrared Effects on Optical Properties

In the design of the infrared reflectance moisture sensor, it is necessary to

consider the optical properties of the media which lie in the path of the radiation. A

concern in designing this prototype was the effect infrared has on the focal lengths and

transmissivity of the lenses. However, it was found that the infrared wavelengths passed

through the system, specifically 1.94 and 1.80 microns, do not have a discernible effect

on the results.

TEST PROCEDURES

In order to determine whether or not the MCS design was producing meaningful

results, tests initially were performed on the system using a black construction paper

background. Water droplets were added one at a time, and voltages recorded for the

reference and water band filters. The test showed a decrease in voltage ratios for

increases in water; however, a saturation point was reached and voltages no longer

decreased, but rather oscillated about a ratio. This did not present a problem as the

samples to be tested would contain much smaller amounts of water.

18



The next set of tests for the MCS involved the optimization of parameters such as

light intensity, bias voltage and power transmission. To transmit the maximum amount

of energy on the detector, the focal lengths of the lenses needed to be determined, and

a cylinder containing the first lens, L1, was placed at the source to ensure that light was

not scattered before collimation. The focal length of the second lens, L2, determined

the position of the detector in the system.

Different bias voltages were tested without any discernable difference in accuracy

or sensitivity of the system, so a 40 V bias was used to ensure that the multimeter would

not be overdriven. To determine the source intensity at which further tests should be

run, readings were taken of seed samples exhibiting different moistures at several

different intensity levels. Another parameter varied was the amount of ambient light in

the laboratory. Because the reference filter allows a ratio of intensities to be calculated,

the ratios stayed approximately within 1% for each seed sample. The tests run on seed

samples of 6% and 25% moisture content showed that at low intensities the two samples

were not easily distinguished, while at higher intensities a significant difference between

voltage ratios occurred (Figure 1-10). This allows a better differentiation between seed

samples. Approximately 450 Watts was chosen because at even higher wattages voltage

ratios began to decrease, and there was still some concern of heat damage to the filters.

If a fixed, rather than variable source intensity were used, the repeatability of tests

would be more evident.
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• Seed Group 1: 6,86% M,C, • Seed Group 4: 25.00% M.C.

Figure I-lO. Voltage Ratios vs, Intensity at two moisture contents.

The next phase of testing involved measuring the reflectance of seed samples of

different moisture contents. The samples were taken from seed batches of known

moisture contents determined by a Burrows model 700 digital moisture meter. The

sample holder was constructed of plex/glass. The reflectance of the empty seed holder

was measured, and a continual increase was observed. This occurred due to the holder

retaining infrared energy or "heating up" if it remained under the light for longer than a

few seconds. Therefore, each voltage measurement had to be made separately and

instantaneously while the readings were stabilized.

Another concern was the effect of sample geometry on measurements recorded.

Tests showed that a single seed layer did not affect the reference filter readings

substantially for batches of similar moisture content. The seed samples were taken from

randomly arranged seed batches, and two voltage readings for each filter were made to

obtain the average values for a particular seed sample. Room temperature and

differences of pressure appeared to slightly affect the readings from the detector.
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CONCLUSION

The final tests performed under the optimal conditions resulted in reflectance

measurementsof seed samplesthat successfullydifferentiated betweenbatchesof

different moisture contents. Occasionally,the readingsof somesampleswere not

ordered properly, perhapsbecausethe actual moisture content of the seedbatches had

varied slightly from the time of measurementwith the digital moisture meter. The

following graphssummarize the resultsof two tests.

Seed Moisture vs. Voltage Ratio

% Moisture

1.02999 1.03139 _032 t0 1.03488 1.04011 1,04 _4e

1,03024 f.031Z_I 1,03224 1.03S 14 1.Q40 15

Voltage Ratio

Figure 1-11. Tes¢ resulcs.

The effectiveness of the sensing prototype was verified by determining the

moisture content of unknown seed batches. Several samples were correctly differentiated

by the sensor under the optimal testing conditions (outlined in the previous section).

The MCS was finally tested for repeatability and the voltage ratios remained within 5%

of the previously measured values corresponding.
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RECOMMENDATIONS FOR FUTURE DEVELOPMENTS

Further improvements in the MCS designare necessaryif the systemis to be

implemented in a bioregenerativeclosed-loopsystem. The most important addition

involves total computer control of the data acquisition process,including alternating the

filters in the cartridge betweenthe interference and referencefilter. Fiber optic

technology integration would minimize the sensor'sphysical size, aswell as provide an

unobstructedand direct light pathway through the system. Infrared light emitting diodes

(LEDs) are designedto emit a specific wavelengthwithout the use of filters. Improved

signalprocessingwill also increasethe sensitivity of the voltage outputs, thereby

permitting differentiation betweenbatcheswithin 0.5% moisture.
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APPENDIX A

MCS COMPONENT LIST AND SPECIFICATIONS

Lenses

L1 : Collimating Lens
Source • Optics Laboratory, Department of Aerospace Engineering, Mechanics and

Engineering Science, University of Florida
Type : Piano-convex
Diameter : 65 mm

Focal Length : 70 mm

L2 : Collecting/Focusing Lens
Source • Optics Laboratory, Department of Aerospace Engineering, Mechanics and

Engineering Science, University of Florida

Type : Piano-convex
Diameter : 54 mm

Focal Length : 46.6 mm

F1 : High Pass Filter
Source: Physics Department, University of Florida
Type: Single crystal layer silicon glass
Wavelengths: 1.10 microns and above
Diameter: 50 mm

F2 : Water Absorbing
Source : Dell Optics
Center Wavelength: 1.94000 microns
Half Power Bandwidth: 0.02700 microns
Half Power Points: 1.95350 microns

1.92650 microns

Maximum Transmission: 91.00 %
Diameter: 1.00"

F3 : Reference

Source : Microcoatings, Inc.
Center Wavelength: 1.78590 microns
Half Power Bandwidth: 0.08741 microns
Half Power Points: 1.82960 microns

1.74220 microns
Maximum Transmission: 56.07001%
Diameter: 1.00"
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Other Components

Cooling Fan
Source: Rotron

Type: sentinel series 747

Flow: 50/60 cps

115VAC/ 14w

Infrared Lamp

Source: Sylvania

Type: 500 w DAY
120 V

Detector

Source: Infrared Industries

Type: Lead sulfide
Part #: 2303

Soybean seeds
Source: Mother Earth Market, Gainesville, Florida
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SUMMARY

This section will describethe work done by the porous-mediumwetnessgroup. A

variety of sensordesignswere studiedto develop a sensorthat would accuratelyand

repeatably give measuredresultsbasedon the amount of moisture present on a porous

surface.

The first step was to determine a difference in properties betweenwater (the

nutrient solution) and the porous ceramic plates that are used. With these results, the

group proceeded to designseveralsensorsbasedon thesedifferences. A testing

platform wasbuilt to give a uniform testingground for each of the designsto minimize

errors in the testing procedures.

Two of the sensorsproposed gavesatisfactoryresults in preliminary tests: an

infrared reflectance sensorand a thermistor basedsensor. They were developed into

full working models. The results of thesetwo models, aswell as descriXions of other

sensorsstudied, will be described.
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INTRODUCTION

In order to maintain an efficient nutrient delivery systemin a CLLSS, the ability

to monitor the amount of nutrient solution available to a plant through the porous

medium is necessary. The most important factor in plant growth and productivity is soil

water, which controls the uptake of most of the nutrients required for plant growth

(Phene, 1988). Nutrient uptake of a crop varies throughout the crop season, as well as

daily. Monitoring the wetness of the porous plate will provide data necessary to help

control the amount of nutrient solution available to the plants throughout their growth

cycle. This control can help to maintain healthy plants, prevent leakage to the CLLSS

atmosphere due to excess solution in the medium, and prevent air entering into the

delivery system due to a lack of solution in the medium.

Plant water stress refers to situations where plant turgor is reduced enough to

interfere with normal processes. Effects of plant water stress depend on plant stress

timing, magnitude and duration. When a plant is under water stress, the leaf stomata

close to provide protection. The transpiration rate and entry of COs declines, thus

decreasing the rate of photosynthesis and consequently decreasing the crop yield. By

controlling the amount of water available and reducing plant water stress, crop yield can

be maximized.

Soil water is usually measured as water content (either mass or volume fraction)

or as soil water potential. Professor D. Hillel (1982) refers to wetness as the intensity of

water in the porous medium. The degree of wetness pertains to the relative

concentration of water in a porous body, independent of the body size. Two sensing

methods were designed for monitoring the wetness of the porous medium: one which
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uses infrared reflectance, and one which is basedon heat dissipation.

methods and design results are presented.

These two

INFRARED DIFFUSE REFLECTANCE

A technique for measuringsurfacemoisture using the Infrared absorption

properties of water is discussedin the Seed Moisture section of this report. Refer to

that section for a detailed description of the sensordesign. The infrared moisture

sensorwas successfullyused to monitor the surfacewetnessof the porous plate test

platform. This technique is especiallysuited to sensingporous plate wetnesssince it

measuressurfacemoisture. This is ideal sinceit is the surfacemoisture that should be

monitored.

Test Results

A testing platform was designed and built to allow the use of several types of

porous plates to see the effects of different materials on the sensor (Figure II-1). The

testing platform was a chamber 2.75 in. wide, 8.25 in. long, and 0.5 in. deep. All sides of

the chamber except for the top are permanently sealed. The ends have valves that can

be opened and closed to provide dynamic flow or static pressure. The top surface has a

pressure seal to allow the changing of plates by simply removing the four set screws that

secure the porous plate.

30



Fluid Reser_o: i

Pressure Chamber- 7

/PorOus Piate

I1 ...................... [

Figure II-1. Testing Apparatus.

The pressure inside the testing chamber was varied by changing the height of the

solution reservoir with respect to the test platform. All of the tests performed

concerning infrared reflectance were performed with a static pressure that was varied

depending on the type of plate used.

The porous plate test platform was configured to provide 1.01 psi of water

pressure, and the infrared source intensity was set to 450 Watts. Data was taken every

thirty seconds over a time period of approximately thirty minutes. The 1.01 psi pressure

forced water out through the porous plate. Over time, surface moisture built up on the

top of the plate. It was this changing water concentration that the infrared sensor

monitored. The results of two separate runs are shown in Figure II-2. Both curves

follow the same general behavior, showing a definite relationship between surface
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moisture and the infrared sensoroutput. There is a voltageratio offset of

approximately0.07 betweenthe two runs despite the fact that they were thought to be

conducted under identical conditions. This discrepancy may be due to a variation of

source intensity between the two runs since it is known that source intensity has a

significant effect on sensor output (see Seed Moisture section).

Vr'_o vs. _I_

i.aR°

1 -

t._ul

T_

i.m

Figure I1-2. Infrared sensor output for porous a plate.

Note wetness increases with time.

Future Development

The IR moisture sensing technique appears to be an excellent candidate for

further development since it is a non-invasive technique that monitors surface moisture.

The data taken suggest that defi_te, repeatable results are possible using an improved

sensor design. See the Seed Moisture, Future Development section for a discussion of

possible sensor improvements.
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INVESTIGATIONS IN ELECTRICAL PROPERTIES

The difference in conductivity between a dry and saturated porous ceramic plate

initiated an investigation into the viability of sensing moisture using this contrasting

property as applied to the dielectric properties in a capacitor. As shown in Figure II-3,

the sensor was envisioned to consist of two plates electrically insulated on their surfaces,

an RC circuit and an oscillator.

m

vt
Resistor7

Capacitor

Figure 11-3. Capacitance sensor.

The moisture in the porous plate would act as the dielectric medium between the two

capacitor plates. An increase in: concentration of moisture in the plate would raise the

medium's dielectric constant, as well as increase the capacitance in the plate. The

change in capacitance would cause a deviation in the natural frequency of the RC circuit

to a new frequency which could be measured by a frequency-to-voltage converter.

Ultimately, a change in voltage would signal a change in moisture concentration. The

measurement may be correlated to a moisture concentration function varying
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through the thickness of the plate.

In testing, the group set out to show a repeatable direct relationship between the

concentration of wetness in the porous growth plate and the capacitance of the sensory

plates. Aluminum tape strips were used as the sensory plates and they were placed on

the surface of ceramic tubing provided by NASA.

The tube was filled with water which was allowed to seep through the pores along

the length of the tube. Capacitance was monitored by a regular capacitance meter from

the instant water was added to the tube until it began to bead on the outside.

Unfortunately, the capacitance varied only 2 to 3 nF and the relationship of capacitance

to wetness was not clear. The capacitance at first increased and then decreased as the

porous tube became saturated. Once the plate was saturated, excess water may have

electrically bridged the two sensor plates, causing the decrease in capacitance.

Agricultural articles describing the use of conductance between probes in solution

as a determinant of ion concentrations in solutions initiated the development of a

resistance-type moisture sensor. Figure II-4 shows that the sensor was constructed with

four probes: the outside probes connected to a constant current source and the inside

probes connected to a voltage meter. As soon as the probes were set down on the

plate, the moist plate acted to close the circuit inducing current flow. The voltage meter

read the voltage drop between its leads on the plate. Given the current and the voltage

drop, an expression for the resistance in that section of plate between the center probes

can be determined. This derived expression represents the surface moisture of the

porous plate.
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Direct Current

/- Source

®
Volt

Figure II-4. Resistance sensor.

More effort was taken in locating and refining a probe. A square corner of a

printed circuit board was cut to expose four metal strips that could be used as contact

leads. The two center strips were glued to the circuit board backing in order to insure

the voltage drops recorded were always taken over the same length of plate. This circuit

was chosen to act as the probe because the metal strips were a small enough distance

apart (approx 1.Smm) to force the current to choose the path across the surface. This

was the least resistive path, rather than down into the plate and through the nutrient

solution. Voltages across the center probes were recorded for ceramic earthenware

from a damp state to saturation. It should be understood that the voltages could not be

generated at drier states because of voltage limitations of a real current source. The

data showed a general inverse relationship between the amount of wetness and the

voltage drop between the center probes. This ranged form several megohms for a damp

condition, to 20,000 Ohms for saturation. Although this behavior was
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expected, the sets of data were not repeatable. Pressure, area, and duration of the

probe's contact with the surface seemed to shift the data. Inconsistencies in data may

be explained by recognizing that variable contact between any two conductors varies the

resistance. The phenomenon of voltage rising with time while the probe was in contact

is evidence that resistance was possibly rising due to the moisture being heated in the

path of the current.

Some alterations to the probe were considered. To remove pressure and contact

area as factors, the new probe would be spring-loaded permitting a constant pressure

contact. The metal strips would be replaced by four metal conical protrusions that

would contact the surface. Also, a sample and hold amplifier could be timed to register

an immediate voltage value so the surface moisture does not have time to heat.

INVESTIGATIONS INTO THERMAL PROPERTIES

Other possible physical characteristics to employ in a moisture sensor are the

thermal properties of heat conductance and heat capacitance of water. The thermal

properties of water differed quite significantly from those of air or ceramics. This

contrast provided an obvious opportunity to sense moisture levels in a porous ceramic

plate.

The technique of measuring heat dissipation to sense the degree of wetness in the

porous medium is based on the fact that the rate of heat dissipation in a porous medium

of low conductivity is sensitive to water content. As the water content decreases, a

larger temperature gradient is needed to dissipate a given quantity of heat. The rate of

36



heat dissipation is dependenton the specific heat, thermal conductivity, and density of

the porous medium (Phene,Hoffman, Rawlins, 1971). In results provided by Phene,

Hoffman, and Rawlins (1971), the conductivity of four porous materials was found to be

higher than that of water, since their saturated conductivities were all greater than that

of water. This provides a basis for developing a sensor which relies on the thermal

conductivity of the medium. The wetness of the porous medium can be correlated to

the temperature gradients measured by the sensor for a given heat dissipation.

One criticism of measuring moisture content based on applying heat is that

moisture will move away from the heat source (Bloodworth, Page, 1957). The amount

of movement depends on the temperature of the heat source and the length of time the

heat is applied. However, if the temperature difference between the medium and the

heat source and the time interval are small, then the movement of moisture can be

considered negligible.

A thermistor-type sensor consists of thermistor elements (approx. 100,000 ohms at

room temperature) in a bridge circuit (Figure I1-5). One thermistor touches the plate

while the other remains away from the plate exposed to the air. A high current (approx.

10mA) runs through the thermistors forcing them to self heat. As a result, the

thermistors rise in temperature a few degrees above the air and plate temperature.

Once the bottom thermistor contacts the moist plate, the water present around the

thermistor functions as a heat sink drawing the heat away from the thermistor. The

thermistor's temperature drops closer to ambient, and the thermistor's resistance is

pushed above the other resistances in the bridge circuit. Finally, the presence of
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moisture is read as a differential voltage across the bridge. The differential voltage was

seen to climb nearly 100% from sensing moisture on a saturated plate.

Voltage !

Source T

/-Potentiometer

__/-Resistor

Voutm

TherAimristor_/_ j.T'\

y _Resistor

Figure II-5. Bridge circuit.

While the exact moisture levels in the test plates were not quantified, general

wetness trends were visually noted. Five ceramic samples were soaked and set out to

dry for different periods. The samples were arranged from driest to wettest. Near

saturation, a further addition of water formed a reflective film on the surface of the

piece.

Although the test results seemed favorable, the circuit required 25 volts to drive a

current. This pushed the thermistors out of their working mode into self heating.

Alternate temperature sensing elements were studied because of the slow reaction time

of the thermistors. The high voltage requirements necessitated the group to search for
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a better way to heat the sensing elements. Upon suggestion to heat the thermistors

externally, the team located a 820 Ohm resistor (Nevill, 1990). The geometry of the

resistor made installing temperature sensors on either side of it convenient. To

overcome the slow reaction times of the thermistors, cement-on thermocouples were

purchased from the Omega Company. The sensing junctions of the thermocouples were

only 0.0005 inches thick. This small thickness allowed millisecond reaction times. The

heating resistor was sandwiched between two thermocouples, shielded from abrasion by

aluminum foil and bonded together by Omegabond 101, a thermally conductive epoxy.

One thermocouple rested against the porous growth plate, while the other one, on

the opposite side of the resistor, faced the air (Figure II-6). This sensor unit was based

on the same heat transfer principle as the thermistor unit. While the thermocouples

were self-generating and did not demand excitation in a bridge circuit, their output did

require amplification. Increasing the resistor's temperature 5°C creates a voltage change

of 900 microamps across the thermocouple leads (table T in Omega catalog ). It was

assumed that a change of 5°C would not have detrimental effects such as drying,

evaporation, or precipitation. Figure II-7 displays the thermocouples in their

complimentary circuit, which furnishes a gain of ten-thousand and filters out most of the

higher frequency noise. .,

Porolls

Medium [-_ I

Fibre II-6. Thermocouple probe.
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-Thermocouple Op-Amp
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Out

Lte _-- Resistor
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Figure II-7. Thermocouple circuit.

Low Pass
Filter
xlO0

In theory, if the two thermocouples had been simultaneously raised 5°C, and then

one of them was lowered 2°C due to its contact with the moist porous plate, the

differential voltage change between the two thermocouples would have been 360

microvolts. The amplifier would have subsequently produced an output of 3.6 volts.

The output was monitored by an oscilloscope. It displayed the signal fluctuating with a

small noise effect superimposed. Unfortunately, the up and down shifts did not follow

any patterns of heating or cooling..'

After some effort to discover the cause of this fluctuation, it was concluded that the

aluminum shielding may have played a part in desensitizing the sensor. Unfortunately, a

stronger output was needed to plot any kind of reaction to moisture.

The bead thermistor, a much more sensitive temperature sensing element, was

chosen to be employed in the previous bridge circuit similar to Figure II-7. The probe
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itself was designedin the same fashion as the thermocouple probe; a thermistor on

either side of a resistive heating element. The thermally conductive epoxy surrounding

the thermistors focuses temperature changes in the environment on the bead. The

insulating epoxy was basically for support, but more importantly it did not become an

extra thermal mass to heat.

The hardware for the thermistor sensor was made of plexiglass and was designed

to hold the sensor in place with set screws. The sensor holder allows the sensor to be

moved while still ensuring consistent pressure and contact area between the sensor and

porous surface. The use of the set screws minimized the heat transfer between the

sensor and its holder. A six-wire wiring harness allowed different sensors to be used in

the holder without much difficulty.

When the circuit was excited, the voltage across the bridge was virtually zero.

Heat was removed from the thermistor by the moisture, lowering its temperature and

raising its resistance thus a differential voltage appeared across the bridge.

Tests for the new thermistor setup were conducted as mentioned previously. As

seen in Figure II-8, the peak voltages varied with respect to the moisture levels in the

tiles. The voltage peaks ranged from approximately 0.20 to 0.43 volts. These peaks

generally occurred in 45 seconds which seems to be a reasonable reaction time for a

moisture sensor. Actually the moisture characteristics of the plates could be

differentiated as early as 30 seconds. Therefore this method of porous plate moisture

sensing seems promising and warrants further development.
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VOLTAGE VS. TIME

PEAK VOLTAGE VARIES WITH WETNESS

Voltage
0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0

Satu

10.00

Wetness 1/

ness 2

20.00 30.00 40.00

Time, seconds

50.00 60.00

Figure II-9. Thermistor probe test data.

CONCLUSION

Various sensing methods were designed and tested for moisture sensing this

semester. Each of the different sensors was based on the differences of certain

properties between water and a porous ceramic. The two most successful sensors were

the infra-red diffuse reflectance and thermistor-based models. Each of these sensors has

strengths and weaknesses inherent in its design that may not be solvable, but further

research is needed to determine if the designs may be improved to an acceptable level.

The infrared reflectance sensor was a successful approach with some problem

areas that must be worked out. These problems included offset problems caused by the

variations in intensity of the light source.
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The thermistor-based sensor demonstrated the viability of the technique of

thermal conductance method. It clearly showed a difference between a saturated porous

plate and one that is dry.
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SUMMARY

Within a closed-loop life support system (CLLSS), it is essential that the health of

the plants be monitored. Therefore, the fabrication of a plant health sensor which can

be automated and monitor remotely and effectively is required. In order to accomplish

this, it may be necessary to sense the crop as a whole as well as individually. This

project will focus on the development of a plant health sensor which can examine the

Biomass Production Chamber (BPC) as a whole. The system which may be best suited

would be a visual system utilizing infrared (IR) radiation. This system would

incorporate the use of an infrared digitizing camera system, as well as a computer

system for analysis.

By using IR absorption as a means to measure chlorophyll content, it is possible

to quantify the health of a plant. Using the absorption band of chlorophyll-a at 0.671

microns a well-defined image may be obtained through a digitizing camera. This camera

will produce an array of numbers representing the image which may be used in a

computer analysis. This analysis may not only reveal areas which are unhealthy, but also

the extent of the damage.

J
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INTRODUCTION

In order to maintain an extended space mission, it may be necessary to grow

crops to support the astronauts physically and psychologically. The plants should be

grown efficiently, with minimal interaction with the crew. This requires a number of

automated systems to care for the crops. One such system should be able to monitor

the health of the plants. This would be accomplished on many different levels. The

first of these levels would consist of a primary health sensor which could scan the entire

crop in order to identify trouble areas. The secondary sensor would be able to examine

a trouble area more indepth, to specify the location and extent of damage. Finally, the

tertiary system would be able to analyze the trouble area for a specific cause and a

possible solution for the problem. The primary and secondary sensors would be

noninvasive, while the tertiary sensor may be destructive; however, the extent of the

destruction could be minimized by the information gathered by the secondary system.

This project centers upon the design and fabrication of a primary sensor system.

To sense the plant health, various factors may be examined. In this case, the amount of

chlorophyll located in the plant tissue provided a direct correlation to plant health. It

may be seen that health decreases as the chlorophyll concentration decreases. This may

readily be seen in chlorotic and necrotic tissue. Chlorotic tissue shows a deficiency in

chlorophyll through a yellowing of the tissue. Necrotic tissue is dead tissue, which is

brown and dry in appearance.

Chlorophyll is detected through the use of IR radiation absorption. Absorption is

measured through the use of a digitizing camera system. Light is reflected off the leaf
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and collected by the camera. The light is first passed through a bandpass filter in order

to pass a wavelength of 671 nm, this wavelength corresponds to the peak absorption of

chlorophyll-a. As the amount of chlorophyll decreases, the amount of 671 nm light

reflected will increase. This will be observed by the camera and recorded by a

computer within an array of integers. This array represents the light intensities located

within an image. Each number in the array represents a grey level and as the numbers

increase, the intensity of light increases.

Although ideally this system would operate on the entire crop under ambient light

conditions, for this project the sample was restricted to a single leaf, laid fiat, and used

an additional light source. With additional modifications these restrictions may be

overcome.

BACKGROUND

Multi-C0mponent System

In a closed-loop life support system, there is a need for a sensor that can

accurately monitor the health of the crops within the biomass production chamber

(BPC). In order to perform this _task, it may be necessary to sense on several different

levels, with the sensor being able to scan the entire crop and detect if there is any

deviation from the healthy status of the plants. If there is a problem, the device should

be able to locate the diseased plant(s} and perform a specific analysis in order to

ascertain the exact nature of the problem. Because these stages require different types

of analysis, the task of finding one device capable of detecting a problem area and
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analyzingthat area is difficult.

To overcomethis dilemma, a multi-component systemcontaining two or more

sensorshasbeen proposed asthe bestmethod for determining the health of the crop

(Appendix A). The different levelsof the sensorwould include the following:

Primary.. The primary sensor should be fully automated and able to perform a general

overview of the crop. The output should be real time and easily digitized for analysis in

a computer data base.

Secondary. The secondary sensor would only be utilized if the primary sensor detects a

problem. This stage should be able to pinpoint one specific area, and focus on the leaf

or stem surfaces of the plant(s) in question.

Tertiary. The tertiary level would use a sensor that could perform a detailed analysis of

the plant. The goal is to determine the exact nature of the problem, whether it be a

deficiency in a specific nutrient or an infection from a certain pathogen. This stage may

need to be destructive, however, the amount of destruction could be minimized by

employing the secondary system'to determine specifically which portion of the plant

should be removed for analysis.

Digital Camera

In designing this health sensor system, it is logical to begin with the primary

sensor which will scan the crop and look for changes in the status of the BPC. A visual
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device, such as a digital camera, is recommended as a way to obtain remote and

automated sensing because the camera may be connected directly to a computer. When

a picture is taken, it can then be digitized and stored in a file as an array of numbers.

The numbers represent data which can be used to reconstruct the image on a computer

screen or to perform a computer analysis. In a CLLSS situation, this technology can be

utilized to take pictures of the crop and then analyze the data in an attempt to find

discrepancies in the normal status of the BPC.

The camera takes a picture of an object by recording the light intensities that

pass through its lens. In the process of digitizing, the intensities are represented by

numbers, known as grey levels, ranging from 0 to 255. A zero defines a situation in

which no light passes through the camera, while a 255 represents the highest intensity

possible for the sensitivity of the camera. In order to visualize the image, these numbers

may be placed into 16 groups which are represented by a color (pseudocolor), which is

independent of the actual color (Schwab, 1990). An example of this process is shown in

Table III-1.

TABLE III-1. Computer Vision Digitizing Process.

digitized

intensity, grey-level color

0 to 16 1 black

17 to 32 2 violet

33 to 48 3 blue

239 to 255 16 white
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In addition to visual inspection through pseudocolor representation,it is possible

to analyze the actual data. Computer systemsmay be used to examine the grey level

values to discover any regionsof interest. An expert systemmay be used to detect

unhealthy portions of the plant through gradient operations. A neural network may use

pattern recognition, this will be coveredin detail in the following section. It is the

computer analysismethod that would be most useful for a CLLSS application by

allowing the digital vision systemto be automated aswell as remote.

Infrared Sensing

It is possible to make the digital camera system even more applicable for plant

health sensing by specifying the type of light allowed to pass through the camera lens.

Leaves demonstrate very selective reflectance properties when exposed to different

wavelengths of light due to the chlorophyll content within their tissues.

Plant leaves contain two types of chlorophyll, chlorophyll-a and chlorophyll-b.

Both types have two absorption bands; chlorophyll-a has bands centered around 450 and

670 nanometers, while chlorophyll-b has bands at approximately 520 and 700 nanometers

(Schalkoff, 1989). However, chlorophyll-a tends to have better absorption effects than

chlorophyll-b (Figure III-1). _'

In combination with the internal structure of the leaves, the amount of

chlorophyll gives a plant a very distinctive reflectance pattern in the near-infrared

wavelengths (Schalkoff, 1989). When healthy, a plant contains normal amounts of

chlorophyll and will absorb light at 450 and 670 nm (Raven, 1986). As it develops a

deficiency or disease, the chlorophyll breaks down, leaving internal air cavities within the
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leaf (Schalkoff, 1989). If allowed to continue, the plant will develop external symptoms

such as chlorosis (yellowing or whitening of a leaf) and necrosis(death of tissue). The

disintegration of chlorophyll and increaseof internal spacescausea sharp increase in

light reflection in the wavelengthsmentioned.
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Figure III-1. Absorption peaks for chlorophytl-a and chlorophyil-b.

Thus, to increase the effectiveness of a visual plant health sensor, it is

advantageous to filter out all light except that in the chlorophyll absorption bands. By

using a bandpass filter to eliminate any light lower than 660 nm and higher than 680

nm, the camera can be used to record only those wavelengths of light which may be

absorbed by the plants. Because :'of this, a change in plant health may be indicated by an

increase in the light intensities of that range. In a digitized image this may be

demonstrated as an increase in magnitude of the numerical data. A computer may be

utilized to monitor the data in order to detect these changes and alert the sensor system

to any problems that may exist. A secondary sensor may then be employed to discover

the exact location of an unhealthy area.
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PRELIMINARY DESIGN

In order to accomplish the objectivesof a primary sensor, the systemwould use

the infrared sensingtechnique previously described.

developeda preliminary designprior to any testing.

would ultimately fulfill all its requirements.

restrictions were applied:

The Plant Health Sensorgroup

The group envisioneda sensorthat

However, for initial development,certain

1. The sensorwould concentrateon one leaf.

2. The leaf would be removedfrom the plant and laid fiat.

3. The sensorneed not be real time.

These restrictions would simplify the project making the initial fabrication of a sensor

for the BPC more attainabIe. Continued developmentwould allow these restrictions to

be overcome.

Basedon thesecriteria, the theoretical sensorwas developed. This sensorwould

consist of, ideally, an IR camera connectedto a computer containing a digitizing

program. The camera lens would be usedin conjunction with a bandpassfilter that

would passwavelengthswithin the chlorophyll absorption bandwidth. In essence,this

would be the entire sensor. The analysisof the input from the sensorwould be

accomplishedby a separateprogram.
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EQUIPMENT

The following equipment was used for the sensor:

Digital Video Camera

The camera used by the plant health group was a Sony black and white video

camera (MODEL # XCM-38). This camera measured light intensities with a CCD

element. Since the camera was not designed specifically for IR, filters were needed to

block out visible light, while allowing IR wavelengths to pass.

The signal received by the computer from the camera is converted to a 512 x 384

array of integers ranging from 0 to 255, these correspond to certain light intensities.

The values in the array are grouped into 16 preset divisions which are represented by 16

pseudocolors. The image can then be displayed on a monitor or saved for later analysis.

Filters

Although an infrared digital camera would have been ideal, this was not

available. Therefore, filters were required to block undesired light waves. Various

natural and glass filters were investigated and tested to determine which allowed the

greatest detail and accuracy in image acquisition.

Computer System

Either an expert system or a neural network may be used to analyze the data

provided by the IR camera. The information can be compared with data of a known

healthy plant in order to determine its state of health.
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Miscellaneous

Other items used during the design and fabrication of the sensor included

different light sources, black felt, and a leaf holder.

VARIOUS DESIGNS

1.1 micron Filter

The first design used is shown in Figure III-2. In this design the filter used was a

silicon disc, with the intrinsic property of blocking all light below 1.1 microns (a high-

pass filter). The leaf remained on the plant and the background was not controlled.

This produced no useful image due to the limited sensitivity of the camera in the IR

range.

In order to overcome this obstacle, a direct light source was added. This

produced an image, however, these images possessed higher reflectance intensities at the

center of the leaf and lower at the perimeter. This was due to the curvature of the leaf

and the position of the light source. Again, the background was not controlled and the

leaf was attached to the plant. Even with various backgrounds, a "hot" spot was

displayed in the center of the leaf due to a concentrated amount of light at that point.

One possible solution was to use diffuse light, another was to investigate the effect of

different filters.
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Camera Filter Stand

FIGURE III-2. Initial design of sensor.

0.66 micron Filter

The first modification to the original design was to replace the silicon disc with a

Corning Glass Filter. This filter blocked all light below 0.66 microns. It produced

images using only the ambient light which was produced by the fluorescent lights in the

room. Although the image contained good details, the curvature and position of the

plant continued to influence the image. Higher intensities of light were located at the

top of the leaf as a result of the reflectance from the overhead lights. Although some

differences could be seen between healthy and chlorotic regions, the intensity
d

discrepancies due to curvature still dominated the image. Therefore, the leaf was

removed from the plant and placed on a white background, however, this background

reflected light producing additional interference.
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0.66 micron Filter with Holder

To overcome both the curvature and background noise problems, a leaf holder

was constructed to hold the leaf flat, provide it with an absorbing background, and

shelter it from the direct light from the fluorescent source (Figure 1II-3). The design of

the holder utilized an overhang that shielded the leaf from any direct light and produced

a constant light intensity distribution. Black felt was used as an absorbing background to

minimize noise interference. A plexiglass window was used to hold the leaf flat against

the felt.

111illlllllll

Camera

T Light Source

Leaf

ck Felt

,_ Figure III-3. Leaf holder.

With the leaf holder and the 0.66 micron filter, more consistent results were

produced. The black felt absorbed the majority of the IR producing a "black"

background in the image. The details noticed on the leaf were no longer a result of

curvature and represented unhealthy portions in the leaf.
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The data from the camerawas numerically analyzed,using the computer program

shown in Appendix B. This program printed the full array of integers for inspection.

The arraysproduced showedsignificant intensity gradientsbetween the leaf and

background, aswell asbetweenhealthy and unhealthy regionson the leaf. However

thesegradientswere not very large. For the backgroundthe integers ranged from 15 -

20, while the leaf ranged from 30 - 45.

Filter Combination

To produce greater detail, the bandwidth of interest was reduced to 0.7 - 1.3

microns (Figure III-4). The filter which achieved this bandwidth, however, possessed a

second pass band at 0.36 microns. To exclude this second peak, the 0.66 micron high-

pass filter was used in conjunction with the bandpass filter. The combination of filters

required an additional light source to achieve good image definition. In order to

disperse this light evenly, a white poster board was attached to the holder. A 150 Watt

light source was directed onto the board which then reflected the light towards the leaf.

The plexiglass was removed due to reflection. This dispersed light was reasonably

uniform across the leaf. The modification of the second filter produced greater detail by

making the gradients between the healthy and unhealthy parts of the leaf more

noticeable.

Upon inspection of the data array, the numbers were found to be reversed from

the expected values; that is, the healthier regions had higher values whereas the

unhealthy regions had lower numbers. It is believed that the reversal was due to factors

which may be affected by the increased light intensity, such as water deficiencies and
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nutrient deficiencies. Another causemay have been heating of the protoplasm in the

leaf due to IR absorption. These changesmay have been displayed in the image due to

the large IR range being detected. In order to remedy this, 15, 25, 40, 60,75 and 150

Watt light sourceswere tested, however,none of thesesourcesproduced the intensity

distribution expected.

TRANSMITTANCE (percentage)

90

6O

3O

0

.1 .3 .5 .7 .9 1.1 1.3 1.5 1.7 1.9

WAVELENGTH (microns)

• Iowpass filter• highpass filter

._ Figure Ill-4. Filter bandwidth.

0.671 Narrow Band Filter

To restrict the number of factors which would change the absorbance and

reflectance data, a smaller bandwidth was used. A new filter of 0.671 micron bandwidth

was used.
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This filter produced better results, a healthy leaf was nearly invisible on the felt

background, while unhealthy leaves were very visible. Furthermore, damaged areas were

able to be seen in great detail allowing for a determination of the health status of the

plant by a neural network. Integers were between 40 - 50 for the background, 50 - 55

for the healthy areas, 90 - 155 for chlorotic areas, and 155 - 190 for necrotic regions.

CONCLUSION

Using the 0.671 micron filter to analyze the chlorophyll content of the plant

tissue, it was possible to obtain data which clearly displayed unhealthy regions on the

leaf. Furthermore, the numerical values of the data would enable an evaluation of the

leaf's health by a computer analysis such as a neural network, or possibly an expert

system. An increase in the pixel intensity corresponds to a decrease in plant health.

As this IR imaging system may adequately detect plant health while remaining

remote, it has promising applications in a CLLSS. Although, this system was limited to

a single leaf with a controlled background and illumination, and it neglected curvature

and positioning of the leaf, improvements could be made such that the sensor may

operate under the normal conditions of the BPC.
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RECOMMENDATIONS FOR FUTURE DEVELOPMENT

At this point, the sensing system has many self-imposed limitations that have been

discussed. In order to further advance this type of sensor it is necessary to develop a

computer system capable of analyzing a three-dimensional image, differentiating

background noise and object periphery, and increasing light sensitivity. Three-

dimensional analysis would account for leaf curvature and, in conjunction with

background insensitivity, may correct for shadows and overlap. Light sensitivity would

allow well defined images to be obtained at ambient light levels, thereby removing the

need for additional light sources.

Three-Dimensional Analysis

By enhancing the computer system (neural network), it may be possible to enable

the system to deal with three-dimensions. This would remove the need to hold the

leaves flat. The system would be able to distinguish differences in light intensity due to

surface contours from those due to plant disease. Neural networks would be ideal for

this procedure because of their abilities in pattern recognition.

Background Distinctions

In examining plants within the BPC, there will be the inevitable problems with

foliage overlap, shadows, and background noise due to chamber walls and light sources.

Therefore, it is important that the image of interest may be distinguished adequately in

order to perform an analysis with as few errors as possible. To accomplish this it will be
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necessaryfor the analyzing computer systemto distinguishbetween the background and

the image of interest. Again, this may be accomplishedby a neural network.

Camera Sensitivity

In this project a regular black and white SONY camera was used in the digitizing

system. However, as this camera was not specifically designed to operate in the IR

range its sensitivity to the wavelengths of interest was limited. This required the need

for an additional light source and IR filters. If an IR camera were to be used it is

possible to eliminate the need for both filters and additional light sources. This would

allow the system to operate at ambient light levels, thereby reducing the effects of glare

caused by increased lighting as well as the residual heat.

System Efficiency_

The ability of the system to sense reduced health must be examined, as it is

essential that any problems can be discovered before they become irreversible. To

accomplish this it would be necessary that a deficiency be slowly induced into a crop to

discover at what point this system would reveal a problem.

63



REFERENCES

Corning GlassWorks. (1960). Catalogue. Corning, New York.

Raven, Peter H. & Johnson, George B. (1986). Biology. Missouri: Times Mirror.

Schalkoff, R. J. (1989). Digital Image Processing and Computer Vision. Wiley Inc.
New York.

Schwab, Wilhelm. University of Florida. Department of Aerospace Engineering,

Mechanics and Engineering Science. Personal Interview. 27 January 1990.

64



Appendix A

Multi-component Sensor
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Multicomponent System
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Appendix B

Data Analysis Program
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/********** This program is used to view the digitized numerical ******/

/********** data in an image file that is produced during the ******/

/********** infrared imaging process ******/

/*********,......................................................................... *****,/
/********** The image file is an unformatted list of unsigned

/* * * * * ** * * * characters, which represent the numerical data for

/* * * * * * * * ** which represent the numerical data for a specific pixel

/********** on the computer screen.

_Z_Z_Z_Z_ ........................................................................

/********** This program reads the image file, converting the

/** ***** * ** characters into integer values. It then writes

/********** the numbers into 24 files, each 16 columns by 512

/********** rows. These files are arranged so that when placed

/********** side by side, the result is a numerical representation

/********** of the image.

**:_*_ _:_** .......................................................................

/**** **** ** This becomes an array that is 384 by 512.

#include "stdio.h"

#include "stdlib.h"

#define ROW 512

#define COLUMN 384

FILE *fp, *fpl, *fp2, *fp3, *fp4, *fpS, *fp6, *fp7, *fp8, *fp9, *fpl0;
FILE *_11, *fp12, *fp13;

/***** i & j = counter variables that maintain the current position ******/

unsigned long int i, j; ,".

***************************** m, & n = counters ******************/

int k, m, n;

/****vector[] = one dimensional array used to take a segment

/*********out of the array and place it in the appropriate file

in, vector[16];

/************* answer = the variable that is used to read the file ******/

unsigned char answer;



/************** Open The Image and Placement Files ************/

/************** The original image file ************************

************************* which the program will be reading ******/

if ((fp = fopen("leafa.img", "rb")) -- = NULL)

printf("Open Error!");
exit(l);

}

/******These are the files into which the numbers will be placed ******/

if((fp I = fopen("file_a", "w")) = = NULL) {

printf("Cannot Open File!\n");
exit(l);

}
if((fp2 = fopen("file_b", "w")) = = NULL) {

printf("Cannot Open File!\n");

exit(l);

}
if((fp3 = fopen("file c", =_ "w")) =NULL) {

printf("Cannot Open File!\n");

exit(l);

}
if((fp4 = fopen("file_d", "w")) = = NULL) {

printf("Cannot Open File!\n");

exit(l);

}
if((fp5 = fopen("file_e", "w")) = = NULL) {

printf("Cannot Open File!kn");

exit(l);

}
if((fp6 = fopen("file_f', "w")) = = NULL) {

printf("Cannot Open File!\n");

exit(l); ._

}
if((fp7=fopen("file_g", "w"))= =NULL) {

printf("Cannot Open File!\n");
exit(l);

}
if((fp8 = *open("file_h", "w")) = = NULL) {

printf("Cannot Open File!\n");

exit(l);

}
if((fp9=fopen("file_i", "w"))==NULL) {

printf("Cannot Open File!\n");

exit(l);

}



if((fplO = fopen("file j", "w")) = = NULL) {
printf("Cannot Open File!kn");
exit(l);

}
if((fp 11 = fopenCfile_k", "w")) = = NULL)

printfCCannot Open File!\n");
exit(l);

}
if((fp12-- fopen("file_l", '_¢")) = = NULL) {

printfCCannot Open File!\n");
exit(l);

}
if((fp 13 = fopenCfile m",_ "w")) = = NULL )

printf("Cannot Open File[\n");
exit(l);

}

rewind(fp);

/*********** Reading The Image File

n=O;

j =0;
k=O;
m=O;

do {
printf("Row %i\n", n);

for(i =j; i <j + 24; i + +) {

for(k=O; k< 16; k+ +) (
if(fread(&answer, sizeof(unsigned char), 1, fp)! = 1)

printfCRead Error!kn");
exit(l); ,'_

}
vector[k] = (int) answer;



/"**********Writing The Numerical Data Into The Proper File

if(i= =j)

}
if(i

}
if(i

}
if(i

{
for(m=0; m<16; m++) {

fprintf(fpl, "%4i ", vector[m]);

}
fprintf(fp 1, "\n\n");

==j+ 1) {
for(m= O; m < 16; m + +) {

fprintf(fp2, "%4i ", vector[m]);
}
fprintf(fp2, "\n\n");

= =j+2) {
for(re=O; m<16; m+ +) {

fprintf(fp3, "%4i ", vector[m]);

}
fprintf(fp3, "\n\n");

= =j+3) {
for(re=O; m< 16; m+ +) {

f-printf(fp4, "%4i ", vector[m]);
}
fprintf(fp4, "\n\n");

}
if(i= =j+4) {

for(re=O; m< 16; m+ +)
fprintf(fp5, "%4i ", vector[m]);

}
fprintf(fp5, "\n\n");

}
if(i= =j+5) {

for(m=0; m< 16; m+ +) {
fprintf(fp6, "%4i ", :Vector[m]);

}
fprintf(fp6, "\n\n");

}
if(i= =j+6) {

for(m=0; m<16; m+ +) {

fprintf(fpT, "%4i ", vector[m]);

}
fprintf(fp7, "\n\n");

}



if(i= =j+7) {

for(m=O; m< 16; rn+ +) {

fprintf(fp8, "%4i ", vector[m]);

}
fprintf(fp8, "\n\n");

}
if(i= =j+ 8) {

for(m=O; m< 16; m+ +) {
fprintf(fp9, "%4i ", vector[m]);

}
fprintf(fp9, "\n\n");

}
if(i= =j+9) {

for(m=O; m<16; m++) {

fprintf(fp 10, "%4i ", vector[m]);

}
fprintf(fplO, "\n\n");

}
if(i==j+lO) {

for(m=O; m<16; m++) {

fprintf(fp 11, "%4i ", vector[m]);

}
fprint f(fp 11, "\n\n");

}
if(i==j+ll) {

for(m=O; m<16; m+ +)-

fprintf(fp12, "%4i ", vector[m]);

}
fprintf(fp 12, "\n\n");

}
if(i= =j+ 12) {

for(re=O; m<16; rn++) {

fprintf(fp13, "%4i ", vector[m]);

}
fprintf(fp13, "\n\n"); ,_.

}
}
j=j+l;
n=n+l;

} while(n!=ROW);

fclose(fp);



/'*****'*"This is the second part of the program that writes the ****'*/

/* ** * * * ** * * digitized image file into useable arrays. ******/

*******************************************************************

#include "stdio.h"

#include "stdlib.h"

#define ROW512

#define COLUMN 384

void main(void)

{

FILE *fp, *fp 14, *fp 15, *fp 16, *fp 17, *fp 18, *fp 19, *fp20, *fp21, *fp22;

FILE *fp23, *fp24;

unsigned long int i, j;
int k, m, n;

int vector[16];

unsigned char answer;

/* open the image file */

if ((fp =fopen("leaf_a.img", "rb"))= =NULL)
printf("Open Error!");

exit(l);

}
if((fp 14 = fopenCfle_n", "w")) = = NULL)
printf("Cannot Open File!\n");

exit(l);

}
if((fp 15 = fopen("file o," '_"))==NULL) {

printf("Cannot Op-en File!\n");

exit(l);

} ._

if((fp16 = fopen("fle__p", "w")) = = NULL) {

printf("Cannot Open File!\n");
exit(l);

}
if((fp 17 = fopen("file_q", "w")) = = NULL) {

printf("Cannot Open File!\n");

exit(l);

}
if((fp 18 = fopen("fle_r", "w")) = = NULL) {

printf("Cannot Open File!\n");
exit(l);

}



if((fP 19 = fopenCfile_s", "w")) = = NULL) {
printf("Cannot Open File!\n");
exit(l);

}
if((fp20 = fopenCfile_t", "w")) = = NULL) {

printfCCannot Open File!\n");
exit(l);

}
if((fp21=fopenCfile_u", "w"))==NULL) {

printfCCannot Open File!kn");
exit(l);

}
if((fp22=fopenCfile v", "w"))==NULL) {

printfCCannot Open File[kn");
exit(l);

}
if((fp23 = fopenCfile_w", "w")) = = NULL) {

printfCCannot Open File!kn"); •
exit(l);

}
if((fp24=fopenCfile x", "w"))= =NULL) {

printf("Cannot Open File!kn");
exit(l);

}
/* reading the image file */

n=0;

j =0;
k=0;
m=0;

do {
printf("Row %ikn", n);

for(i=j; i<j+24; i++) {
d

for(k=0; k<16; k++) {

if(fread(&answer, sizeof(unsigned char), 1, fp)! = 1)
printfCRead Error!kn");
exit(l);

}
vector[k] = (int) answer;

if(i= =j+13) {
for(re=O; m<16; m+ +) {

fprintf(fp 14, "%4i ", vector[m]);
}
fprintf(fp 14, "\nkn");



if(i= =j+14) {
for(m=O; m< 16;m+ +) {

fprintf(fpl5, "%4i ", vector[m]);
}
fprintf(fp15, "\n\n");

}
if(i= =j+ 15) {

for(re=O; m< 16; m+ +) {

fprinff(fp 16, "%4i ", vector[m]);

}
fprintf(fp 16, "\n\n");

}
if(i= =j+ 16) {

for(m=O; m<16; m+ +)

fprintf(fp17, "%4i ", vector[m]);
}
fprintf(fp 17, "\n\n");

}
if(i==j+17) {

for(m=O; m<16; m++) {
fprintf(fpl8, "%4i ", vector[m]);

}
fprintf( fp 18, "\ n\ n");

}
if(i= =j+20) {

for(m=O; m<16; m+ +)

}
if(i= =j+ 19) {

for(re=O; m<16; m++) {
fprintf(fp20, "%4i ", vector[m]);

}
fprintf(fp20, "\n\n"); ".

fprintf(fp21, "%4i ", vector[m]);

}
fprintf(fp21, "\n\n");

}
if(i= =j+21) {

for(m=O; m<16; m++) {

fprintf(fp22, "%4i ", vector[m]);
}
fprintf(f-p22, "\n\n");

}
if(i= =j+18) {

for(m=O; m<16; m++) {
fprintf(fp19, "%4i ", vector[m]);

}
fprintf(fp 19, "\n\n");



if(i= =j+22) {
for(re=O; m< 16;m+ +) {

fprintf(fp23, "%4i ", vector[m]);
}
fprintf(fp23, "\n\n");

}
if(i= =j+23) {

for(m = 0; m < 16; m + +) {

fprintf(fp24, "%4i ", vector[m]);
}
fprintf(fp24, "\n\n");

}
}
j=j+l;
n=n+l;

} while(n! =ROW);

fclose(fp);
exit(l);

}
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SUMMARY

In a closed-loop life support system (CLLSS) it is desirable to have an automated

system monitoring and maintaining food crops growing in the Plant Growth Unit (PGU).

One method of accomplishing this is by applying the pattern recognition properties of

neural networks to determine plant health. The first phase of the project consisted of

using the Back-propagation algorithms to train and control a robot arm, and in the

process gain basic knowledge and understanding of neural networks in order to tackle

the second phase of the project. In phase two, Competitive Learning and Back-

propagation algorithms were used to try to determine the health of a plant leaf using

data supplied by the Plant Health Group.
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INTRODUCTION

Neural networks are today where conventional computers were in the 1950's.

whole new class of devices can be built out of semiconductors which are just as

powerful as computers but follow entirely different rules (Roberts, 1988).

problems best solved by neural networks are those that people solve well:

A

The kinds of

association,

evaluation, pattern recognition, and working with obscure or incomplete data. Neural

networks also handle problems that are difficult to compute and do not require perfect

answers, but do require fast, good answers, such as industrial controllers or real-time

robotics applications.

All neural networks have 3 things in common: distributed processing elements

(neurodes), the connections between them (network topology), and the learning rule.

Neural networks ideally operate as parallel distributed processors, all operating

simultaneously to converge on a solution. They are not specifically programmed, but

rather trained, a process which involves modifying the connection weights until the

system converges, or finds a minimum-energy state, based on gradient descent methods.

The main purpose of this project is to try to adapt neural network theory to

CLLSS applications, or more specifically, to plant health. In order to do this, sequential

programs are used to simulate the parallel distributed processing of a neural network.

This project utilizes a Parallel Distributed Processing software package (McClelland and

Rumelhart) in conjunction with 'C' programs written by the authors.
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THEORY

Artificial neural networks are looselybasedupon a simplified model of the

human brain. This simplified model is organizedinto networks of simple neuron-like

processingelementsthat passsignalsto each other. Since they operate similarly to the

human brain, they demonstratebehavioral characteristicsanalogous to human

intelligence. However, they are not good at solving the kind of problems at which

conventional computers traditionally excel, suchasprecise numerical computations.

INPUT rIUTPUT

HIDDEN

Figure IV-1. Back-propagation network structure.
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Figure IV-1 showsa graphic representation of a simple three-layer BP network,

identified asa 2:4:3. Each circle representsa processingelement, or neurode. Each

arrow representsa connection and its associatedweight with each column of neurodes

being called a layer. The first layer is the input layer, the last is the output layer, and

optionally, those in betweenare called hidden layers. Each neurode, which may be both

a sendingand a receiving neurode, is connected to everyneurode in the next layer, but

only to those neurodes. The value exiting a neurode along an arrow, the activation

level of the neurode, is typically a value between -1 and + 1, and is sent to the receiving

neurode. The values receivedby a neurode are processed(more on this below), and a

new activation value is calculated and sent simultaneouslyalong all outgoing

connections. There are two special casesof activation values. First, the input neurodes'

activation values are simply the input values. Second,the output neurodes' activation

values represent the completed transformation (answers).

In this example,neurodes are numbered from 0 to 8. The variable w(r,s)

identifies the weight of the connection betweenneurode r, the receiving neurode, and

neurode s, the sending neurode. For example, the weight of the connectionbetween

neurodes0 and 4 is written w(4,0). There is only one input and output layer, but there

can be n optional hidden layers. Each layer can have an arbitrary number of neurodes.

There appearsto be somerelationship between the number of layers, the number of

neurodesin the layers,and the quality of the solution, but the relationship is presently

unknown, except for somespecial cases.

The feed-forward operation of the network is straightforward. Feed-forward

means that all data flow is from left to right, and there are no feedbackloops. The

82



input layer neurodes can accept analog or discrete values. The output of an input layer

neurode is exactly equal to the input. The activation value of a sending neurode is sent

along its connections to receiving neurodes, where these multiply each activation by its

associated weight and sums them, thus giving the total input. The input is operated on

by a transfer function, yielding the new activation value for that neurode, which is then

sent along its connections to the next layer. The transfer function must be continuous

and possess a derivative at all points. The function used here, and in most

implementations, is a sigmoid function, shown in Figure IV-2.

LARE
ECC_TIVE

INPUT

Y = F(x)

0.0

LAE
PO:;ITIVE
INPUT

Figure IV-2. Sigmoid Transfer Function.

The sigmoidal function is stated as:

f(x) = 1/(l+(enet))

This assures an activation value between 0 and 1.
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The feed-forward operation in effect transforms an input state to an output state.

For a meaningful transformation, there must be some method of determining and

modifying the values of the weights of the connections. This method is called the

learning rule, and is used to train the network. The learning rule used for this project is

the generalized Delta rule given by Rumelhart(1986).

Back-propagation assumes that there exist some arbitrary number of training

patterns, each made up of a set of input values and their associated output values, and

that the output values, called targets, are correct for the inputs. Since the correct

outputs are known, this is called supervised learning. Training is a process in which the

weights of the connections are changed in response to a given input and output pair

according to the learning rule.

To summarize the operation of the network during training, the inputs are

presented to the network. The resulting activation flows from the input layer to the

output layer. The output neurodes' values are then compared to the target values, and

an error term is calculated. Starting with the output layer, the weights are adjusted,

using the Delta rule, layer by layer, propagating each layer's error back to the previous

layer, computing weight changes along the way. The weights are not actually changed

until after the error has been propagated back to the previous layer. Once the

activation has flowed forward and the error has propagated backward, one iteration is

complete, and the network is ready for the next pattern. When all the patterns have

been processed once, one epoch of training has been accomplished.
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The Delta rule is expressedby the equation:

W(new) = W(old) + Beta * E * X / IX] 2

where W is the weight vector before and after the weights are adjusted, Beta is the

learning rate, E is the error term, and X is the input vector. After the feed-forward of

the input signals, all the information needed for application of the Delta rule is

available. The error term E is easily calculated by the equation:

E = (target - output).

After the Delta rule is applied to the output layer, the matter becomes more

complicated. The problem is that the correct activation value for a hidden layer

neurode is not known. Since the error in each output neurode can be spread over its

input vector, the exact proportion of error attributable to each connection weight can

only be approximated. The error term for a hidden layer neurode is:

e(i) = f'(I) *[summation w(ij) * E(j)]

where e(i) is the error in the i'h hidden layer neurode, and the sum is taken over j,

where j is the j'h output layer neurode, and f'(I) is the derivative of the sigmoid function

for the hidden layer neurode for the net input it received. It can be shown that

f'(I) = f(I) * (1-f(I)).

By applying the derivative of the transfer function, only relatively small changes are

made in the weights coming into a hidden layer neurode, by keeping these error terms

smaller. Now that the error term is available, the Delta rule can be applied and the

weights adjusted.
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This process is repeated for every hidden layer. When the weights connecting the

input layer to a hidden l@er are adjusted, the back-propagation of the error is

completed for this iteration. The process continues until some desired value of total

error is reached, whereupon the network is said to be trained.

Once the network is trained, the weights are frozen and the network can be used

for its intended application by applying input signals and allowing them to flow through

to the output state. This operation is typicaLly very fast, even in sequential simulation.

Transformations which in a conventional program are too computationally complex for

real-time applications can be accomplished by using a module containing a trained

neural network.
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ROBOT ARM CONTROL

The Robot

The robot arm used is a small Pro-Arm with 5 degrees of freedom. It's range of

motion is 240 degrees about the base, 144 degrees about the shoulder, 120 degrees

about the elbow, 180 degrees for wrist pitch, 360 degrees for wrist roll. The gripper can

open about 4 inches. For the purposes of this project, the wrist pitch and wrist roll are

held constant. The object to be grasped is assumed to be the stem of a soybean plant

about 2 inches above the growing surface.

The robot has its own microprocessor that receives instructions from a control

program through a parallel port. An instruction is typically a character followed by 6

integers ill] to i[6] where -2000 < = i[n] < = 2000, representing the number of steps

available to a particular stepper motor. There are six stepper motors, one for each

joint. All motors operate simultaneously, but can accept a zero motion command.

Program

The authors developed a program in Turbo C under MS-DOS 3.x that allows real-

time interactive control of the robot arm. This was necessary since the neural network

requires accurate input and output pairs for supervised training. A base of plywood was

built, with the robot centered on it, accommodating the two-dimensional range of

motion of the robot arm. Grid overlays were then mapped over the surface, one in
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polar and one in rectangular coordinates. Figure IV-3 showsthe base overlaid with the

polar and the Cartesian coordinate grid. Using the control program, setsof values were

generatedfor a polar coordinate (r,0) associatedwith the number of stepsrequired

(base, shoulder, elbow) to move the gripper to the proper position. The range for the

base axiswas limited to +- 90 degrees.

l lll i!II_\

Figure IV-3. Robot base with overlays.

Back-propagation requires all analog input to be normalized between 0 and + 1.

Equations to normalize input and output were coded in a module of the control

program to generate the training sets for points on the polar coordinate grid. A

program to demonstrate the operation of the network was also written. It allows

interactive entry of a desired rectangular coordinate, calculates the corresponding polar

coordinate, normalizes all four inputs, and passes the values to a module simulating the

feed-forward operation of an artificial neural network. The output values are then

rescaled, and sent to the robot arm, along with the commands required for the gripper.
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BP Program

The training is done using the back-propagation program supplied with Rumelhart

and McClelland's Parallel Distributed Processing. Network architecture is nearly

unrestricted in this program, and it allows the user to specify and display any or all

variables. It reads in 5 files to set up a training session. The .net file defines the

network architecture; the .pat file contains the training sets; the .str file sets variables;

the .wts file contains any weights saved from a previous session; and the .tem file

specifies the screen layout. To test the network's ability to generalize solutions to

inputs it has not been trained on, a pattern is run through a single feed-forward

operation, and the error is calculated. An epoch of training consists of one iteration of

back error propagation for each pattern in the training set. Training is computationally

intensive and normally takes hours or days, depending on the size of the network, the

number of epochs, and the speed of the computer.

Networks Trained

The first preliminary step was to design and train a network to transform two

dimensional cartesian coordinates to polar coordinates. Networks for polar to cartesian

coordinate transformations were also developed. The first network designed was a

(2:4:2) network. The notation gives the number of neurodes in each layer, and has the

form (i:j:k) where i=input, j=hidden, and k=output neurodes. This network was given

the task of transforming cartesian coordinates to polar coordinates. This network was

trained for 1,000 epochs giving a tss (total sum of squares) of 0.0227, with no bias

included. A (2:3:2) and a (2:3:3:2) network were developed to transform polar
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coordinatesto cartesiancoordinates. The (2:3:2) network was trained for 4000 epochs

and achieveda tssof 0.0165. The (2:3:3:2) network was trained for 11,245epochs,

yielding a tssof 0.0001. This level of error produced output values that differed from

the targets by no more than 0.006. Both of thesenetworkswere presentedwith 11

target patterns. No test patterns were evaluated for generalization at this point because

evaluation methods were not known.

The acquired knowledgewas then applied towards the construction and training

of neural networks that mapped two dimensional polar and/or cartesian coordinates into

robot units correspondingto base,shoulder, and elbow positions. The first network

mapped polar coordinates to robot units. This wasdone by constructing a (2:5:5:3)

network. This network was trained for 6000epochswith 10 target patterns and yielded

a tssof 0.0003. Next, a (2:4:4:3), (3:4:4:3), and a (4:8:8:3)network were constructed and

trained. The networks had difficulty with inputs and outputsnear zero, so the origin of

the coordinate systemwaschangedsuch that all points were within the first quadrant

and no point wasdescribedas a zero. The (4:8:8:3) had inputs of both polar and

rectangular coordinates (x,y,r,0). The (3:4:4:3) had inputs of (x,y,r) and the (2:4:4:3) had

inputs of (x,y) only. This was done to compare how the transformations are affected by

different inputs and varying numbersof hidden elements. The (2:4:4:3) ran 20,000

epochswith a tssof 0.0026,the (3:4:4:3) ran 20,000epochswith a tssof 0.0001,and the

(4:8:8:3) ran 30,000epochswith a tssof 0.00001. All of thesenetworks had 11 training

patterns. Thesenetworks were also presentedwith test patterns to determine the

accuracyof learning. The best transformations and generalizationswere produced by

the (4:8:8:3) network. Individual output valuesvaried from the target with a
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maximum deviation of 0.001on the trained patterns. The maximum deviation on a

generalized output was 0.091,but almost all other generalizedoutputs were within 0.02.

Other networks that were developed were (3:5:3), (3:8:3), and (3:32:3). These

networks accepted inputs in terms of (x,y,r) and were trained under 30,000 epochs. This

was done to compare the effect of the hidden layer size on the learning rate and the

final convergence state. There seems to be a minimum number of neurodes, which

differs with the inputs and outputs, that will produce an acceptable error level. Two

hidden layers generally perform better than one.

To measure the rate of convergence of the tss error, four networks were selected

and reset to randomize the weights on the intercormections. Each network was reset

four times to ascertain whether the original weights affected how well the network

trained. The networks were then run for 3000 epochs. The tss was recorded at

initialization and again when the networks were trained. All of the networks converged

to a tss of about 0.04 at 500 epochs, the rate of convergence slowed dramaticalIy. Since

the network requires on the order of 104 epochs to reach an error level corresponding to

a few stepper motor units, the rate of convergence was determined to be a relatively

minor factor. It was found that the networks that transformed x and y coordinates to

robot units did not achieve the level of accuracy shown when polar coordinates were

included in the input. The (x,y) transformations, regardless of the network architecture,

showed slightly worse performance on patterns they were trained on, and a much worse

ability to generalize. The following networks were trained and tested: (2:5:3), (2:32:3),

(2:3:3:3), (2:3:5:3), (2:4:4:3), (2:8:8:3), (2:16:16:3), and (2:32:32:3).
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Results

The following results are for the (4:8:8:3) network at 30,000 epochs.

shows some of the 20 training patterns.

Figure IV-4
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Figure IV-4. Training patterns.

Figure IV-5 shows target and actual values for the patterns shown above, along

with the values for some test patterns.
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Figure IV-5. Target and actual values,
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The team found that by giving the network more information by increasing the

number of input elements, the network's ability to generalize was enhanced. The

(4:8:8:3) network with 11 training patterns satisfactorily generalized test patterns, so to

see if this generalization could be improved, the number of training patterns presented

to the network was increased to 20. The network then ran 30,000 epochs and yielded a

tss of 0.0001. This level of accuracy is considered excellent, and more than adequate for

its intended purposes. The individual output error was 0.001 for trained patterns,

showing that higher numbers of training patterns improved the performance of the

network in this case. In addition, this network generalized much better.
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PLANT HEALTH RECOGNITION

Problem Description

Phase two of the project involved using neural network techniques to determine

the state of health of a plant leaf in an automated fashion. The goal was to develop a

program that would read in a file containing data on the infrared reflectance of a leaf

and prepare the data for use by a neural network which would be trained to distinguish

between a healthy leaf and a sick leaf. Although the neural network was trained on a

very limited number of unhealthy conditions, the purpose was to demonstrate the

feasibility of the process. If the process can distinguish between healthy and unhealthy

leaves, then phase 2 is successful.

Raw Data

The raw data preparation was done by the Plant Health Group. The basic idea

makes use of the fact that chlorophyll-a absorbs light in the bandwidth 0.671 microns

plus or minus 0.01 microns. The leaf is mounted on a black felt background, which is

highly absorptive in this bandwidth, so that there is a definite edge. A diffuse 130 watt

light source illuminates the leaf. An infra-red bandpass filter of 0.671 microns is

mounted on a black and white digital camera, and the camera digitizes an image of 512

by 384 pixels, feeding it directly into a computer program that stores it in a file as

unsigned characters.
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Program

The first step was to extract usable characteristics from the image files. Neural

networks have the ability to deal with incomplete and incorrect data. This ability is

enhanced by increasing the number of inputs.

noise, especially near the edges of the leaves.

significant characteristics to prepare as inputs.

characteristics selected as input data:

The image files have a certain amount of

It was decided to find at least 10

The following is a list of the

1. The number of positive slopes.

2. The number of negative slopes.

3. The average pixel intensity for pixels in the leaf.

4. The gradient of steepest ascent.

5. The gradient of steepest descent.

6. The average value for the 50 highest intensities.

7. The number of pixels in the VERY HEALTHY range.

8. The number of pixels in the FAIRLY HEALTHY range.

9. The number of pixels in the SICK range.

10. The number of pixels in the DEAD range.

11. The percent of leaf pixels > MAXPIXEL.

12. The percent of leaf pixels < MINPIXEL.
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A number of other characteristicswere consideredand rejectedbecausethe difference

between healthy and unhealthy valueswaseither too small or inconsistent. All of the

inputs selectedshowedsignificantand consistentdifferencesbetweenhealthy and sick

leaves. The program reads the file and extracts these rawvalues.

The next step was to normalize the raw input valuesbetween 0 and + 1. Each

input canbe normalized individually, as long asthe resolution of the data does not get

lost in the process. The program normalizes the input data and stores it as a list of

floating point numbers, alongwith an associatedoutput value, in a pattern file format

compatible with the BP program.

Training Set. The Plant Health Group provided 28 usable images. All of the images

were taken in one sitting, so the lighting intensity was constant. Twelve of the leaves

appeared healthy, and sixteen appeared unhealthy. The Plant Health Group looked at a

color graphic computer display of each leaf which was consistent with the leaf's visual

appearance. One of the leaves, however, showed a spot of some kind. That leaf was

graded as suspicious. Arbitrary values were then assigned to each category of leaf.

Healthy leaves were assigned 0.9, and unhealthy leaves were assigned 0.1. The

suspicious leaf was not assigned a value. A training set was created, consisting of eight

healthy leaves and twelve unhealthy leaves. The other eight leaves, including the

suspicious one, were saved for testing.
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Networks Trained. Figure IV-6 shows the ten networks designed and trained.

NETVOI_K T££(I000) TS£(,°O00)

121511

12,8,1
12'16d

1213,211

12,414d

t2,6,3,1

t217iSil
t£,814,1

t2,8,Sd

12'4'4'4d

0,097£
0,0430
0,0423
0,1707

0.0031
0,4166

0,0225
0,00.55
0.0797

0,00£0

0,0801

0,0402
0,0403
0,1631

0,0008
0,2109

0,0017

0,0014
0,0754

0.0007

Figure IV-6. Networks trained.

Each network was trained for 2000 epochs. The tss error was recorded at 1000 and

2000 epochs. The 12:4:4:1 was chosen for further training and testing.

The 12:4:4:1 network was trained for a total of 20,000 epochs and achieved a tss

of 0.00001, which is very small in this case. The target output of each leaf was

compared to the actual output, and 19 of the patterns had an error of less than 0.001.

One pattern had an error of 0.003. This means that if the target value was 0.1, the

network typically graded it between 0.099 and 0.101.
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Results.

trained.

pattern.

The test set consisted of the 8 leaves on which the network had not been

The test set was presented to the network, and output was produced for each

The output is shown in Figure IV-7.

12,4,4,i 2&O00 EPOCHS

PAT SIGHT NETWORK SIGHT NETWORK
GRADE GRADE DECISION DECISION

0 ,I 361 SICK SUSPICIOUS
4 ,I .099 SICK SICK

15 .1 .083 SICK SICK
21 ,1 .099 SICK SICK

_3 .5 ,898 SUSPICIOUS HEALTHY

10 ,9 ,908 HEALTHY HEALTHY

16 ,9 .902 HEALTHY HEALTHY
27 ,_ ,898 HEALTHY HEALTHY

Figure IV-7.Results.

The network performed very well. For every leaf except leaf 0 and leaf 23, the network

graded the leaf to within 0.017 of the grade assigned.

Leaf 0 was graded much closer to healthy than was expected with a value of

0.761. Visually, the leaf was healthy looking except for a brown edge. The value of

0.761 was considered far enough from 0.9 to assign a network grade of suspicious.

Leaf 23, the one that had been labeled suspicious, was assigned a value of 0.898 by the

network. Since the leaf looked completely healthy, this grade was accepted reasonable.
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Competitive Learning

Early detection of plant health is a serious consideration when plants are used as a

vital source in an, enclosed environment. The Plant Health Group has addressed the

issue of how to obtain data relevant to plant health, while the concerns of the of the

Neural Network group is how to process this data into useful information.

The Network group has approached this matter of data processing with two

distinct types of learning mechanisms.

pattern associator learning paradigm.

The first model utilized back propagation in the

The main attribute of pattern association is the

presentation of pattern pairs (input and target patterns), which supports supervised

learning. The second model was developed in accordance with the regularity detector

learning paradigm. The outstanding trait of this model is the ability to recognize

important features of a set of input patterns without being given target patterns, i.e., no

forced learning. The competitive learning (CL) model is the mechanism that was

chosen to fit this environment. Both of these learning paragons are especially useful for

feature detection, but the following discussion will concentrate on the competitive

learning mechanism and its role in plant health detection.

CL Theory. The primary goal of a competitive learning network is to discover

prominent, general internal features as a result of a set of input stimulus patterns.

There are three fundamental concepts involved with the competitive learning scheme.
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1- A set of units are such that all are the sameexcept for some
randomly distributed parameterwhich makeseach of them
responddifferently to a set of input patterns.

2- The strengthof eachunit is limited.

3- Provisions are made so that the units may compete for the
privilege to respond to specific groupsof the input patterns.

The basic architecture of the competitive learning mechanism is similar to a

multi-layered pattern associator(SeeFigure IV-8.): the output of a unit in one layer is

connected to all of the units in the layer immediately above it. The marked difference

in the network's physical structure is that within each layer, clusters are formed by

interconnectingunits in groups. There are no interconnectionsbetween clusters in a

mutually shared layer.

LAYER 3

Inldbllocy Ckmtm's

LAYER 2

InMbhry Clmterx

Ex_t_
Conrm_lorm

INPUT PATTERN

Figure IV-8. Pattern associator.
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The connectionsbetween layers are excitory and connectionswithin clustersare

inhibitory. All elements in a cluster send inhibitory signals to all other elements in the

cluster. This is what inspires the competitive nature of the network. Each unit

competes with all other units in the cluster until one unit dominates. The stronger the

response of the dominating unit, the further it inhibits all of its competing units. This

continues until only one unit in the cluster is active in reaction to a particular input

pattern. The implication here is that learning takes place only if a unit wins the

competition with other units in its cluster.

A geometric interpretation of the competitive learning model gives a clearer

insight to the overall process. For simplicity, a simple two layered network is illustrated

in Figure IV-9. There are three units in the input layer and three units in the output

layer. The three output units comprise a single cluster. The values of the output units

are either 1 or 0, 1 being active, 0 being inactive.

/

Figure IV-9. CL two-layered network.
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There are eight input patternspresented to the network. These input patterns

canbe considered asvectorswith three elements in the vector. This correspondsto 3

dimensional space. If the input patterns are normalized, then thesevectorswill have the

same lengthswhere the endswill fall somewhereon the surfaceof the sphere.(See

Figure IV-10.)

Figure IV-10. Sphere w/vectors.

The set of eight input patterns is presented to the system. For each specific

input, the output units compete for the right to become active while disabling the other

two. This is accomplished by adjusting the weights on the lines connecting the input and

output units. It is useful to also represent these weights corresponding to each output

unit as a unit vector. This allows the weight vectors to fall on the same sphere surface

as do the input vectors.
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When the input pattern is presented to the network, one unit in the output

cluster will be slightly more active than the other units. This unit will then create an

inhibitory signal that is slightly greater than the other two. The weights are readjusted

to accommodatethe dominant unit, thusgiving that unit even stronger input values.

This in turn generatesa stronger inhibitory signal. This procedure continuesuntil the

systemreachesstability where the weights are no longer readjusted and fully

compliments the dominating unit. At this point the other two units are totally disabled.

This processoccursover a number of training runs for the entire set of input

patterns. What is effectively occurring is that the weight vectors are repositioning

themselvestoward the center of a group of input patterns. (SeeFigure IV-11.) This

allows an output unit to respond to an input pattern that is closest to the corresponding

weight vector.

Figure IV-11. Sphere w/vector repositioning.
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The groupingsof the input patterns is an important characteristicof the competitive

learning mechanism. Each cluster in a network createsN groups of patterns, one for

eachunit in the cluster. Each unit in the cluster attempts to capture approximately the

same number of stimulus patterns for a group. Hence, for the example given, the

network acts as a tertiary feature detector. One feature for each of the output units.

It should be noted that since this type of learning paradigm is completely

spontaneous, correlations between the output of the network and the real-world scenario

have to be made. This can be accomplished by intimate knowledge of the structured

network and the physical system to which the network is modeled.

In an attempt to provide the Plant Health group with useful information in

regards to image data, the network group designed an alternative network model using

the competitive learning model. Due to limited time, this model sought to extract only

the most basic features from the input data. The following is an overview of the actual

design and the association between the output of the network and the image of the

plant's leaf.

CL network and results. The goal of the designed competitive learning network was to

obtain important basic features of the transition zones of the leaf. The transition zones

were identified as those areas where the intensity either increased, decreased, or both.

Locating a zone where the intensity either increased, or decreased, implied that the data

set may be a representation of the beginning or ending edge of the leaf, respectively. If

a zone was located where the intensity both increased and decreased within a pattern,

then this was interpreted as a definite indication that the leaf was experiencing
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unhealthy conditions. The restriction here was that the data come from the interior

edgesof the leaf.
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Figure IV-12. Input patterns + weight matrix.
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The network's architecture was rudimentary sinceit was to perform a simple task.

The structure consistedof one input layer with 16 input units and one output cluster

with 3 units. The network waspresentedwith 37 input patterns. These input patterns

were in a binary format. The systemwas trained on 40 epochswith a learning rate

parameter of 0.05. The systemquickly achievedstability and did not further modify the

weight matrix. This was an indication that the systemlearned all that it could within 40

training runs. The patterns presented to the systemand the weight matrix used for the

connectionsare shownin Figure IV-12. Note the formation of the weight distribution

on each output unit, and how the input patterns relate to the output of the units in the

cluster. There are 3 possible outputs: 1-0-0depicts an increasein intensity, 0-1-0 depicts

an increaseand decreasein intensity, 0-0-1depicts a decreasein intensity.

For example,pattern P12yields the following results for each of the output units:

unit 1 total weight is 56, unit 2 total weight is 6, unit 3 total weight is 1. Since unit 1

has the largest weight factor, then unit 1 will have the strongestactivation level and will

inhibit both units 2 & 3. The output for the systemwill therefore be 1-0-0. This output

relates to an increase in intensity acrossthe data field.

The binary format wasused to prevent the systemfrom running without bounds.

Raw data inputs causedthe weight matrix to exceedlimitations. This was in violation of

the concept that the strength of each unit be limited. Hence, for eachpattern set the

first pattern would causeone output unit to overwhelminglydominate the others. The

dominating unit would remain in control regardlessof the patterns that followed. This

resulted in no learning. The binary format allowed fair competition amongthe output

units.
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The binary numbers were generatedfrom the digitized image data in the

following way. Raw data was taken from a row or column of the image matrix. The

row or column of data wasbroken up into blocks 16 data points long. These 16data

points were then averaged. To smooth the data set, 10% of the averagevalue was

subtractedfrom each data point. Data points were then compared to the averagevalue.

If a data point exceededthe averagevalue, then a 1 wasused for input to the network.

If the data point was lessthen the averagevalue, then a 0 was used. These 16 data

point conversionscomprised one input pattern. The number of input patternspresented

to the network depended on the length of the row, or column, divided by 16. Thus, a

column that is 320 data points long would have 20 input patterns presented to the

network.

CL future potential. The spontaneous response of competitive learning models adds to

the realm of information processing. Allowing a system to capture its own features from

its internal representation has great potential to solve complex problems that otherwise

might not be possible. Although the competitive learning mechanism that was designed

for processing plant health data is basic in nature, this does not mean that there are

limitations to the information that can be obtained using this data. The limitations

extend as far as the designer's creativity. Adding an unlimited number of units, clusters,

and layers may reveal such detail about the current condition of the plant that early

detection and prevention could easily be accomplished. For enclosed environments,

such as CLLSS, this is a critical factor.
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CONCLUSION

In a closed-loop life support system(CLLSS) it is desirableto have an automated

systemmonitoring and maintaining food crops growing in the Plant Growth Unit (PGU).

This could be accomplishedwith an expert system( ie. a traditional serial computer with

an enormousdata base stored in memory). This type of system,however, takesup so

much memory in the computer that it getsvery expensiveto have a data base so large.

In addition to the expense,the larger the data base is, the longer it takes to accessthe

information desired. Therefore, it is believed that the best method of accomplishingthis

is by applying neural network theory to determine the health of a crop growing in the

PGU. From a commercially available softwarepackage,Parallel Distributed Processing

by McClelland and Rumelhart, Competitive Learning and Back-propagation algorithms

were used to determine the health of a plant leaf. The results of creating the networks

and processing the leaf data seem promising. The "answers" given by the neural network

agreed with visual inspections of the leaves. With further investigation and network

building, we feel a neural network system could be developed for use as a plant health

detector.
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GLOSSARY

NEURAL NETWORK - A computing systemmade up of a number of simple, highly

interconnectedprocessingelementswhich processesinformation by its dynamic state

responseto external inputs.

NEURODE - An artificial neuron in a neural network, consistingof a small amount of

local memory and processingpower. The output from this simple processingelement is

fanned out and becomesthe input to many other neurodes.

CONNECTION - A signal transmissionpathway betweenprocessingelements,loosely

corresponding to the axonsand synapsesof neurons in a human brain, that connects the

processingelements into a network. The strength of the connection is determined by its

weight.

WEIGHT - Within a processingelement, an adaptive coefficient associatedwith a single

input connection. The weight determines the intensity of the connection,depending on

the network's designand the information it has learned.
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LEARNING LAW - An equation that modifies all or some of the adaptive coefficients

(weights) in a processing element's local memory in response to input signals and the

value supplied by the transfer function. The equation enables the network to adapt

itself to examples of what it should be doing and to organize information within itself.

TRANSFER FUNCTION - A mathematical formula that, among other things,

determines a neurode's output signal as a function of the most recent input signals and

the weights in local memory.

SUPERVISED TRAINING - Trial and error process where the neural network is

supplied with both input data and desired output data.

BACK-PROPAGATION NETWORK - A network comprised of neurodes in layers.

This network is always hierarchial with a minimum of 3 layers (input, output, hidden)

Each layer is fully connected to the next layer and there are no interconnections within

a layer. The error from the output layer is propagated back through to the previous

layer and the weights are adjusted. The previous layer compares this error with its

output, back-propagates the error and adjusts its weight. This process continues for any

number of layers.
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